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A New Evaluation Method for 2-D Fluorescence Spectra Based

on Theoretical Modeling

By David Geissler, Dorte Solle, Eckbert Stirk, Thomas Scheper, Herbert Markl, and Bernd Hitzmann*

This article presents a new evaluation procedure of 2-D fluorescence spectra obtained during a yeast cultivation without
performing a calibration measurement. The 2-D fluorescence spectra are used to predict the process variables biomass, glucose
and ethanol. The new calibration procedure uses a theoretical model of these process variables, i.e., differential equations, to
replace any calibration measurement. The theoretical model parameters are identified simultaneously during the calculation of
the chemometric models. The root mean square error of prediction of the chemometric models with respect to off-line
measurements are 1.5 g/L, 0.40 g/L and 0.56 g/L for glucose, biomass and ethanol, respectively.

1 Introduction

In bioprocess techniques it is important to monitor the
complex biological process in order to be able to run the
process as efficiently as possible. There are basically two ways
for doing this, these are off-line or on-line measurements.

Off-line measurements require sampling, mostly pretreat-
ments of the sample and measuring. This involves a lot of work
and, depending on the analytical methods, a considerable time
delay. Furthermore, these methods are invasive and can
disturb the current process. On the other hand, off-line
measurements can provide detailed analysis of a variety of
compounds. The advantage of on-line measurements is the
possibility of continuous and in-time measurements without
additional work. The pH value, the dissolved oxygen as well as
the oxygen and carbon dioxide in exhaust gas are examples,
which are typically measured on-line.

However, important process variables (e.g., substrate,
product and biomass concentration) are only accessible by
complex analytical methods. On the other hand, using
chemometric models, these process variables can be predicted
from 2-D fluorescence spectra [1,2].

The main disadvantage of data-driven methods, e.g.,
chemometric models, is that many off-line measurements
are required for the calculation of model parameters. Here, a
methodology for the calibration of chemometric models is
presented, which does not need further off-line measurements
of the process variables, i.e., no calibration measurement is
needed. The information about the process variables is
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provided by a theoretical model, whose model parameters
will be identified during the determination of the chemo-
metric model.

2 Materials and Methods

2.1 Process and Process Model

The process presented here is the cultivation of Sacchar-
omyces cervevisiae grown in a 1.5 L bioreactor by using the
Schatzmann medium. The general course of such a cultivation
run is shown in Fig. 1.

During the first phase of the cultivation the primary
substrate (glucose) is consumed. In this phase the cells grow
and ethanol is produced. During the second phase, when no
more glucose is available, the metabolism of the cells switches
to ethanol as substrate. This typical diauxic growth is discussed
in detail in the literature [3,4]. The process model used for the
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Figure 1. Typical concentration profile for a yeast batch cultivation. During
phase 1 glucose is consumed and ethanol as well as biomass are produced. In
phase 2 ethanol is converted into biomass.
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bioprocess describes the concentration of biomass, glucose
and ethanol”.
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Differential equation (1) describes the growth of biomass
X(¢) on glucose S(¢) in phase 1 and on ethanol E(¢) in phase 2.
Therefore, two specific growth rates u; and p, must be
considered. Eq. (2) describes the consumption of glucose,
which correlates with the growth of the biomass in phase 1. Eq.
(3) describes the production as well as consumption of
ethanol, which is produced in phase 1 and consumed in phase
2. Yxs, YEs and Yxg are the yield coefficients with respect to
the conversion between glucose, ethanol and biomass. The
specific diauxic growth is considered through the fact, that
is only greater then zero while glucose is present and y, is only
greater than zero while ethanol is present. Therefore, no
growth on ethanol can be observed while glucose is not
completely consumed.

This bioprocess model has five unknown parameters.
However, it is not possible to identify all of them through
the 2-D fluorescence spectra. The changes in the spectra can
be correlated with changes in the concentrations, but the
prediction of absolute values cannot be made without any
reference. So, the yield coefficients have to be determined by
preruns of the cultivation. Furthermore, when the cultivation
is started the concentrations of the process variables are
known. With these requirements the calculation of the
chemometric model as well as the identification of the kinetic
parameters \; and p, through the 2-D fluorescence spectra can
be performed.

Based on the differential equations (1) to (3) a Simulink
model was created in MATLAB (Ver.6.0.0.88 R12 and
Simulink 4.0, The MathWorks, Inc., Natik, USA). This model
solves the given system of differential equations numerically
using a fourth-order Runge-Kutta method and simulates the
process variables depending on the given kinetic parameters.

2.2 Fluorescence Spectrometer

During the cultivation 201 spectra were recorded at an
interval of 6 minutes by a 2-D fluorescence spectrometer
(BioView, Delta Light & Optics, Denmark). A spectrum
consists of 150 measured excitation/emission wavelength
combinations with excitation wavelengths from 270 nm up
to 550 nm and measured emissions from 310 nm up to 590 nm,

1)  List of symbols at the end of the paper.
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with 20 nm intervals respectively [5]. For further computing
the spectra were complemented (using the value ‘NaN’ in
MATLAB) in order to obtain a 16 x 16 matrix for each
spectrum. Furthermore, the spectra were smoothed by
adjacent averaging because measurement noise has been
identified in the spectra.

2.3 Simultaneous Identification of Kinetic Model Parameters
and Chemometric Model Determination

In order to calculate the bioprocess variables biomass,
glucose and ethanol from the 2-D fluorescence spectra,
chemometric modeling is required. The chemometric model-
ing and the identification of the parameters were performed
simultaneously in several steps:

1. During the first step the process variables glucose, ethanol
and biomass were simulated using arbitrary but sensible
start parameters iy = 0.4 h™ and p, = 0.04 h™'. These
values of the parameters are determined roughly by
preruns of the process.

2. Based on the simulation, the time was determined at which
the glucose is completely consumed. This marks the end of
phase 1 and the beginning of phase 2. Additionally, the end
of the process was determined, i.e. the time at which
ethanol is completely consumed. Now, the process is
divided into two phases and the spectra were divided into
two sets corresponding to these phases in order to calculate
independent chemometric models for these phases. Spec-
tra, recorded after the time determined as the end of the
process, were not considered at all.

3. The spectra of each phase were respectively subdivided
into a calibration and a validation set. Then the spectra, just
as the simulated process variables, were centered. Based on
the calibration spectra and the simulated process variables,
n-dimensional partial least square regressions (n-PLS)
(N-way Toolbox 1.04 for MATLAB, C. A. Andersson and
R. Bro, http://www.models.kvl.dk/source) [6] were per-
formed for each variable and each phase individually. A
previously performed principle component analysis had
shown that two principle components are sufficient. The
calculated models were applied to the validation spectra
for prediction with the restriction, that the values can not be
less than zero. So, we obtained five individual models, three
models for phase 1 (glucose ethanol and biomass) and two
models for phase 2 (ethanol and biomass), because the
glucose concentration is zero and has not to be predicted.

4. The so obtained predictions were compared with the
simulation. The differences were calculated and divided by
the number of totally used spectra in both phases in order to
consider their varying number. Then, they were squared
and summed up. The obtained error value was minimized
using a Nelder-Mead simplex algorithm by optimizing the
parameters ; and w, (max 100 iterations).

5. At last, the complete process was predicted using all
spectra and the five calculated chemometric models in their
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corresponding phases. For validation the result was
compared with off-line measurements and the root-
mean-square error of prediction between prediction and
off-line measurement was calculated. The simulation and
the off-line measurements were evaluated in the same way.

3 Results

After the optimization procedure of the model parameters
this evaluation procedure makes simultaneously five chemo-
metric models to predict the biomass, glucose and ethanol
concentration from the 2-D fluorescence spectra. Their
prediction is shown in Fig. 2. The comparison with the off-
line measurements is shown in Tab. 1. The concentrations of
glucose, ethanol and biomass are well described by the models.
The prediction error for glucose comes to 5 % with respect to
the maximal occurring value (31.6 g/L). The errors for
biomass and ethanol are 4 % and 5 % with respect to their
maximal values (10 g/L, 10.7 g/L respectively).

For a final evaluation of the process parameters u; und y,,
the simulation based on the identified parameter combination
was compared to the off-line measurements. This is shown in
Fig. 3 and the errors are listed in Tab. 2. Corresponding to the
result of the chemometric prediction one can see that the
cultivation is well described by the simulation and the
different phases are correctly identified. The error is about
the same as for the prediction, this means ca. 5 % with respect
to the highest occurring concentration. Therefore, the specific
growth rates for the two phases are p; = 0.352 h™ and y, =
0.0504 h™".
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Figure 2. Prediction of the process variables using 2-D fluorescence spectra as
well as off-line measurements.

Table 1. Error (root-mean-square error of prediction) of the chemometric
model prediction with respect to off-line measurements.

Process variable RMSEP
Glucose 1.5 g/L
Biomass 0.40 g/L
Ethanol 0.56 g/L
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Figure 3. Simulation of the process variables based on the identified process
parameters as well as off-line measurements

Table 2. Error (root-mean-square error of prediction) of the simulation with
respect to off-line measurements.

Process variable RMSEP

Glucose 14 g/L

Biomass 0.40 g/L

Ethanol 0.48 g/L
4 Summary

With the method presented here the kinetic parameters of a
theoretical process model were successfully identified, and
chemometric models for the prediction of glucose, ethanol
and biomass were calculated. This was achieved without any
off-line measurements. All that was needed are 2-D fluores-
cence spectra of a cultivation that were interpreted by a
MATLAB program based on an appropriate process model.
Apart from the start concentration the off-line measurements
can be reduced to a minimum and only serve for the
verification of the chemometric models. The moment when
the metabolism switches over from glucose to ethanol can be
identified more precisely by spectroscopy because of the
numerous measurements. Furthermore, errors of measure-
ment and noise can be filtered more effectively to ensure
correct results. Although the results in Fig. 2 are based on
smoothed spectra the noise can still be seen. But in this case
spectra were recorded only every six minutes. The BioView
spectrometer is capable of recording one spectrum per
minute. This makes it possible to better smooth in order to
enhance the quality of the prediction and identify the phases
more precisely.
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Symbols used
X(@) [g/L] biomass concentration
S  [g/L] glucose concentration
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E([) [g/L] ethanol concentration [2] D.Solle, C. Protsch, R. Ulber, K. Seja, B. Willke, R. Faurie, B. Hitzmann,
[hfl] specific erowth rate erowing on glucose T. Scheper, Optimierung der industriellen Tryptophanproduktion, Sen-
1 1 p & & £ & sorik, Spektrum Akademischer Verlag, Heidelberg 2001.
wa [h™] specific growth rate growing on ethanol  [3] S.-O. Enfors, J. Hedenberg, K. Olsson, Bioprocess Eng. 1990, 5, 191.
Yxs [g/g] yield coefficient glucose to biomass [ K. Schiigerl, K.-H. Bellgardt, Bioreaction Engeneering — Modeling and
. . . Control, Springer-Verlag, Berlin Heidelberg 2000.
YES [g/g] yleld coefficient glucose to ethanol [5] B. Hitzmann, S. Marose, C. Lindemann, T. Scheper, Computer
Yxe [g/g] yield coefficient ethanol to biomass Applications in Biotechnology, CAB7 — 7th Int. Conf., Osaka 1998.
[6] R. Bro, Ph. D. Thesis, Royal Veterinary and Agricultural University,
Kopenhagen 1998.
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